
Agile/Scrum for Capstone Project Management 

Alisha Sarang-Sieminski and Rebecca Christianson 
Olin College of Engineering 

 
Agile/Scrum is a philosophy and methodology for improving performance on complex projects. 

While largely used in software development, this approach to project management can be applied 
to projects in any field. Agile/Scrum focuses on transparency, adaptability, individual team 

member autonomy, accountability, and continuous improvement. We have implemented a version 
of Agile/Scrum in Olin College’s senior capstone course. In this paper, we provide an overview of 
the mechanics of Scrum as a project management tool and discuss its implementation in a design 

capstone context. Our goal is to inform other Capstone programs, so they can assess whether 
Scrum is an appropriate tool for them and learn from our experience. 

Keywords:  Scrum, Project Management, Accountability 

Corresponding Author: Alisha Sarang-Sieminski,alisha@olin.edu

Overview of Agile/Scrum 

Scrum is one of the most commonly used 
methodologies for implementing an Agile philosophy to 
execute projects.1,2 Agile is a philosophy for managing 
complex projects, which was developed in the 1990s by 
software developers and draws upon “lean” 
manufacturing.1,2 The Agile Manifesto states that Agile 
values “Individuals and interactions over processes and 
tools, working software over comprehensive 
documentation, customer collaboration over contract 
negotiation, [and] responding to change over following 
a plan.”3

 The idea is to promote a more “lean” method 
of doing complex projects than more traditional 
“heavyweight” waterfall method used widely in 
software and engineering.4 Key aspects of Agile/Scrum 
are iterative development, collaborating with customers 
with evolving needs, and cross-functional teams with a 
high degree of autonomy.  

In traditional Scrum, the key roles are the Product 
Owner and the Scrum Master.1,4 The Product Owner 
holds the vision and often holds a position of authority. 
They are responsible for managing and prioritizing tasks 
in the Product Backlog: a list of discrete tasks with a 
clear definition of done and a team-wide understanding 
of their size. The Scrum Master is responsible for 
making sure the team is enacting Scrum properly and 
for removing impediments (either internal or external). 
The other members of the team are self-organizing in 
deciding how to get the work done.1 The high level of 
autonomy and an emphasis on individual accountability 
are intended, and demonstrated, to improve morale, 
motivation, and productivity.  

In Scrum, work is broken down into short “Sprints” 
of ~2 weeks.1,4 Each sprint has several ceremonies to 

give them structure, bring clarity, display work, get 
feedback, and reflect on the team’s productivity.1 First, 
a Sprint Planning Meeting is held at the beginning of 
each Sprint. Here, a Sprint Goal is articulated, likely by 
the Product Owner, and tasks to be completed during 
the Sprint are moved by the team from the Product 
Backlog to the Sprint Backlog. Work is “kept visible” 
by displaying it on a sprint board, either electronic or 
physical, on which each task is tagged as To Do, Doing, 
or Done. There is a strong emphasis on having a 
“minimal shippable product” at the end of each sprint. 

At the end of each sprint are a Sprint Review, which 
is publicly facing, and a Retrospective, which is 
internally facing.1 At the Sprint Review, the team 
presents work that was completed during the sprint to 
stakeholders. In the software context, the team should 
present a demo of their working software to the 
customer or other company stakeholders to get feedback 
and understand evolving customer needs. Only the team 
attends the Retrospective. Here, the team reflects on 
what went well and what did not in the most recent 
sprint. They identify actionable items to improve their 
function as a team (sometimes called the Kaizen). 
Again, the retrospective keeps the team focused on 
individual accountability in team functioning, task 
completion, and communication. It is intended to 
promote a level of self-awareness. 

In addition to these larger ceremonies, Daily Stand-
ups are held in which each team member briefly reports 
on tasks they are working on or have completed since 
the last stand-up.1 While brief, the Stand-ups allow team 
members to understand what everyone is working on, 
identify and quickly deal with impediments to progress, 
and cross-pollinate ideas. 



Another key aspect of Scrum is the concept of 
“timeboxing” ceremonies or other tasks.1 It is the simple 
idea that a time limit is set to accomplish the ceremony 
and it is important to adhere to that limit. Like many 
concepts in Scrum, this is not novel or limited to Scrum, 
but it is a good practice. 

Implementation in Capstone 

Project management is taught in some form in virtually 
all capstone programs. Based on a survey of published 
information about capstones, it appears that most use a 
traditional waterfall method.5,6,7,8 While there are a 
handful of reports of using alternate approaches, those 
using Scrum are primarily Software capstones.2,9,10 In 
one report comparing (non-software) capstone teams 
using traditional project management vs. Scrum, the 
Scrum teams took more ownership over the process, 
used the products of planning more effectively, reported 
more satisfaction with planning, and delivered similar or 
more complete final products.11  

At Olin College, SCOPE (Senior CapstOne Program 
in Engineering) is a year-long engineering design 
capstone with 14 teams each year. Teams are 
multidisciplinary and comprised of students from all 
majors offered – Engineering (with concentrations such 
as Bioengineering, Computing, Design, and Robotics), 
Electrical and Computer Engineering, and Mechanical 
Engineering. Teams of 4-6 students work on projects 
primarily sponsored by industry. While each team has a 
faculty mentor and company liaison, to whom they are 
accountable, the teams have a high level of autonomy in 
how the project is executed. They often work in 
collaboration with the company liaison to define the 
scope of work and direction of the project. Though Olin 
students have a lot of experience working on open-
ended team projects by their senior year, SCOPE is their 
longest project to date and requires implementation of 
project management tools for successful outcomes. 

Historically, students received a 2 hour lecture on 
traditional engineering project management approaches 
and tools. They were asked to choose a project manager 
(PM) and to plan their project using a Gantt chart, using 
what is referred to as a “waterfall” approach. The PM 
role came with a great deal of power, often including 
decision making and task assignment. As accurately 
planning a 9 month project is challenging for even 
seasoned engineers, it comes as no surprise that student 
engineers were not very effective at anticipating what 
they could accomplish in their projects or articulating 
the appropriate deliverables in detail.  

The issues associated with this traditional project 
planning approach and the rise in visibility of Agile-
based project planning approaches caused the SCOPE 
faculty to begin to explore the use of Agile/Scrum as a 
project management tool that would enhance the student 

experience and improve project outcomes. We 
anticipated two types of benefits. First, we hoped that 
the focus on team-wide accountability would shift the 
teams away from an extrinsically motivated hierarchical 
structure to one in which team members were more 
engaged because they were more intrinsically motivated 
and held themselves accountable to the team. Second, 
we believed that several aspects of Scrum would 
improve team performance. Overall, the Scrum 
framework is focused on constant improvement of 
process. Further, the 2 week sprints are an appropriate 
length of time for students to plan. Also appealing was 
the focus on defining “done” upfront. The hope was that 
defining done would require team members to agree on 
what the task was more explicitly and to articulate when 
they would know it was done instead of working until 
the time is up or spinning their wheels. 

Initially, an external Scrum trainer was brought in to 
give a 2 hour lecture to students at the beginning of the 
semester to introduce them to Scrum and they were 
asked to try it out. However, the trainings were very 
high-level, largely aimed at selling the philosophy to 
students as opposed to offering them concrete tools. 
Most teams continued to use a traditional PM approach. 

Over the past 2 years, a number of Olin faculty with 
Scrum Master training have developed and delivered in-
house trainings. These trainings focused more on 
introducing specific Scrum techniques for students to 
use. We have observed that implementation of aspects 
of Scrum by SCOPE teams has increased in the past few 
years. However, while many of the underlying 
philosophies of Agile/Scrum resonate strongly with our 
program, we are finding that the full Scrum formalism, 
as originally described, is not completely appropriate for 
our senior capstone program.  

Perhaps the most obvious difference between a senior 
capstone environment and a corporate environment is 
that our student teams do not function within a company 
structure, nor do they often have direct interaction with 
the eventual user of their product. The capstone projects 
are sponsored by a company, and the student team 
works more in the role of a team of contractors with 
input from a liaison appointed by the company. This 
requires rethinking of the team leadership structure 
recommended by Scrum. On one hand, it is tempting to 
define the sponsoring company as the team’s ‘customer’ 
and have an internal product owner within the team, but 
this doesn’t exactly fit the nature of the product owner 
within Scrum and obscures the fact that the team’s 
product does have an actual customer other than the 
liaison. Likewise defining the company liaison as the 
product owner does not fit within our understanding of 
the role of this individual within our contractual 
agreement with sponsoring companies. We therefore 
redefined the role of product owner, splitting the Scrum-
defined responsibilities between the company liaison 



and a team member who chooses to take on this role. 
Scrum Master has retained nearly its original definition. 

Another difference is that, while employees of a 
company are usually working full time for that 
company, our SCOPE students are only spending about 
a quarter of their time on SCOPE (~12h/week), since it 
is only one of approximately four classes they take at a 
time during their senior year. This requires rethinking of 
the timeline of the Scrum rituals. A daily standup does 
not fit well into a structure where students are not 
making daily progress on their project. For the SCOPE 
implementation of Scrum, we recommended to the 
students that they institute some form of standup, but 
left it up to the student the method and timing of this 
ritual. Concepts like the Retrospective align with 
previous coaching on teamwork reflection that students 
have received earlier in the curriculum. 

While some SCOPE teams are pure software teams, 
some teams are pure hardware development, and many 
are a mix of interacting hardware and software work. It 
is relatively easy to implement Scrum for the software 
development teams, as that reflects the environment it 
was optimized for and many computing students have 
experience with Scrum from internships. However, 
while Scrum devotees claim that it can be used for any 
process, it is more challenging to understand how to use 
Scrum for hardware projects or for those projects which 
include a more integrated development process. 
Similarly, Scrum was created to specifically address the 
development phase of a project. Our capstone projects 
range from research and blue-sky design phase to more 
defined implementation. To address this within SCOPE, 
we recommended that students focus less on the Scrum 
idea of having a fully ‘shippable product’ at the end of 
each sprint, and more on creating a list of tasks for their 
sprint which each had a well-defined definition of done 
regardless of the type of work currently being 
undertaken by the group.  

An issue that is not unique to our students is the 
challenge of impressing upon students the importance of 
documentation. Our students often just want to build 
things and don’t understand the details that can be lost 
in a hand-off to new personnel; they tend to leave 
insufficient documentation to allow for future work on a 
project to continue in an efficient manner. The tension 
between documentation and “doing” is worsened by 
using Scrum because it was developed for a fast-moving 
software context and for a project embedded within a 
company with a long institutional memory compared 
with an academic environment in which the students 
cycle every year. We therefore need to supply additional 
reinforcement of the need to document technical and 
design decisions sufficiently. We repeatedly emphasize 
that effective documentation is part of the process and 
the work is not “done” until they have captured key 
points relevant to passing the projects to key 

stakeholders (e.g. the sponsors, future teams). 

Student Experience and Lessons Learned 

Students designated as Product Owners and Scrum 
Masters on each team were asked to fill out a survey 
about their use of Scrum at the end of the first semester 
this year. Seventeen students responded, representing 10 
of 14 teams. Teams were asked about the type of work 

they engaged in for the first semester; 9 teams engaged 
in research, 8 in user-oriented design, 5 in technical 
design and specification, 1 team built something, 2 
teams started coding, and 1 team engaged in 
mathematical modeling.  

They were then asked about which of the Scrum 
artifacts they started using and which they were still 
using. All teams started using the Product Backlog, 
Sprint Board, Sprint Reviews, and Product Owner and 
Scrum Master roles (Figure 1, black bars). Most teams 
used the other artifacts. By the end of the semester, all 
or most teams were still using the Sprint Board, Sprint 
Reviews, Retrospective, team Roles, the Kaizen, and 
Standups (Figure 1, hashed bars). This level of 
engagement with Scrum and retention of artifacts was 
quite high relative to our (unquantified) observations 
from previous years. The decrease in the use of the 
Sprint Board and task definition was somewhat 
surprising as this is a tool teams have found to be 
particularly useful in previous years. Also surprising 
was the high use (and even increase) in the Standup. 
While some teams reported not meeting daily or using 
an electronic, rather than in-person, method, students 
indicated that this was a useful tool for keeping 

Figure 1. Teams using Scrum artifacts at the beginning 
(black bars) and end (grey bars) of the first semester. 

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f 
te

am
s



communication amongst the team going smoothly. 
The students were also asked whether Scrum artifacts 

were really helpful, somewhat helpful, or not helpful in 
making progress on the project. Figure 2 shows the 
number of teams reporting that each artifact was 
Somewhat Helpful or Really Helpful in “making 
forward progress”. The more positive response was used 
in cases where multiple team members responded. 

It is interesting to note that students reported that the 
Product Backlog was useful, even if they didn’t 
continue to use it. The Product Backlog was initiated in 
the beginning of the semester in conjunction with the 
company liaison and formed part of an extended process 
of learning about the project direction and goals. Also, 
some students who didn’t report using certain artifacts 
or even Scrum at all in the quantitative responses often 
referenced using modified versions of them in their free 
comments. In working directly with teams, many were 
using the 2-week sprint unit of detailed project 
planning. While a concern with this approach is losing 
sight of the end-goal, teams were actually quite good at 
keeping it in mind and using the focused sprints to align 
their trajectory with the end goal. 

While we have not yet extracted all of the lessons 
learned from this implementation of Scrum, the most 
important message appears to be that the aspects of 
Scrum in which the students were given both a well-
defined rationale as well as some flexibility in 
implementation (team roles and standups in particular) 
appear to be the most successful in terms of both usage 
by the teams and perceived effectiveness in helping the 
team processes. From a course administration 
perspective, the task visibility aspect of Scrum appears 
to have helped increase equitable division of work 

between team members (as evidenced by peer- and self-
assessments) and the tension over documentation within 
Scrum has led to some valuable conversations with 
teams regarding the role of appropriate documentation.  

As the year progresses, we will continue to work to 
articulate key differences between the corporate setting 
and our senior capstone environment which affect the 
implementation of Scrum. We are also exploring other 
project management approaches in this space that might 
be more applicable to the types of projects we work on. 
We intend to make appropriate modifications to 
optimize Scrum for a senior capstone project setting or 
adopt (and modify) an alternate methodology. 

References 
 
1. J Sutherland and K Schwaber, “The Scrum Guide,” 
http://www.scrumguides.org/docs/scrumguide/v1/scrum
-guide-us.pdf (accessed March 2016) 
2. J.G. Kuhl, “Incorporation of Agile Development 
Methodology into a Capstone Software Engineering 
Project Course,” Proceedings of the 2014 ASEE North 
Midwest Section Conference, Iowa City, IA, 2014. 
3. K. Beck, et al., “Manifesto for Agile Software 
Development,” http://www.agilemanifesto.org 
(accessed March 2016) 
4. M.E. Grimheden, “Can Agile Methods Enhance 
Mechatronics Education? Experiences from Basing a 
Capstone Course on Scrum,” Proceedings of ASEE, San 
Antonio, TX, 2012. 
5. J.T. Allenstein, et al., “From the Industry to the 
Student; Project Managmenet of an Industry-Sponsored 
Multidisciplinary Capstone Project,” Proceedings of 
ASEE, San Antonio, TX, 2012. 
6. K.F. Li, “Capstone Team Design Projects in 
Engineering Curriculum,” IEEE International 
Conference on Teaching, Assessment, and Learning for 
Engineering, Hong Kong, 2012. 
7. A. Goold, “Providing Process for Projects in 
Capstone Courses,” Proceedings of the 8th annual 
conference on Innovation and technology in computer 
science education, New York, 2003. 
8. D. Bowie, et al., “Teaching Engineering Project 
Management via Capstone Designs that Develop a 
Viable Product,” Proceedings of ASEE, Indianapolis, 
IN, 2014. 
9. D. Rover, et al., “Advantages of Agile Methodologies 
for Software and Product Development in a Capstone 
Design Project,” Proceedings of FIE, Madrid, 2014. 
10. V. Mahnic, “The capstone course as a means for 
teaching agile software development through project-
based learning,” World Transactions on Engineering 
and Technology Education, 13(3): 225-230, 2015. 
11. M.E. Grimheden, “Increasing student responsibility 
in design projects with agile methods,” Proceedings of 
ASEE, Atlanta, GA, 2013. 

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f 
T

ea
m

s

Figure 2. Number of teams reporting that Scrum artifacts 
helped with the progress of their project in the first semester.  


