CS Capstone: Lessons from the Field

Robert Adams and Jamal Alsabbagh
School of Computing and Information Systems
Grand Valley State University
adams@cis.gvsu.edu and alsabbaj@gvsu.edu

During the several years that we have been teaching the computer science capstone course we have learned many

valuable lessons.

This paper describes the pedagogy of our course along three axes: product, process, and

professionalism. The paper illustrates how our course ensures that the student, by demonstrating each of these
elements, will be a competent professional upon graduation. Finally, the paper concludes with other lessons
learned regarding motivation, team-formation, individual student evaluations, and development methodology.
Our goal is to provide ideas for others engaged in capstone education, as well as to elicit feedback from that same

audience.
Introduction

A recent column in the SIGCSE Bulletin' described
three overarching goals of computer science capstone
courses, and named them the three “P”s. They are
product, process, and progression in learning.
“Product” refers to the actual software being produced
by CS students in their capstone course. We all care
that our student can produce first-rate software.
“Process” refers to ensuring that our students follow an
established software development methodology, and do
not approach their projects in an ad hoc manner.
Furthermore, we expand the goal to include
communication and presentation skills. “Progression in
learning” refers to an observable increase in the breadth
and depth of student learning throughout their time as
undergraduate students.

It can hardly be argued that these three goals are (or
should be) present in every CS capstone experience.
However, it seems that progression in learning is an
issue larger than the capstone course itself. For
example, Clear’ describes the use of student portfolios
to assess progression in learning throughout a student’s
career. This is an issue larger than the capstone course.
Therefore, we offer an alternative third "P™
professionalism. In the context of a CS capstone
course, professionalism refers to personal behaviors
exhibited by the student’. We want students to make
informed ethical decisions within the context of a
software development project.

This paper addresses how the CS capstone course at
GVSU addresses each of these issues. After describing
what is currently happening in our CS capstone course,
we provide several observations and lessons learned.
Our goal is to provide ideas for others engaged in
capstone education, as well as to elicit feedback from
that same audience. Our hope, like others that teach CS
capstone courses, is to improve the quality of the

capstone experience in order to produce the best CS
graduates.

The next few sections describe the pedagogy of our
CS capstone course. The final section contains our
reflections on teaching the course for the past several
years.

Product

The "product” dimension of the capstone course deals
with the quality of the projects being produced by
students. This is a fairly easy goal to justify - we all
want our CS graduates to be able to produce efficient
yet elegant code. The difficult task is how to judge the
quality of the projects.

Motivational Factors

For the majority of our students, the capstone project is
their most significant semester-long project during their
degree program. Our first step in promoting quality is
motivational, where students are reminded at the
beginning of the semester that their capstone project and
experience will probably be the most significant part of
their  professional  portfolio upon  graduation.
Furthermore, students are strongly encouraged to
showcase their work publicly in venues such as “Project
Day” and “Student Scholarship Day” that are organized,
respectively, by the College of Engineering and
Computing and the University.

Although hard to quantify, we believe the
motivational element of a public presentation and demo
help motivate teams to produce quality final products.
Project Day and Student Scholarship Day involve
faculty and students from other departments and the
general public. We believe the added pressure of a
wider audience helps to motivate students to do their
best.



Our second way of promoting quality is by allowing
individual teams to identify their own project ideas.
Our approach was motivated by the observation that
when we assigned the projects in the past, students
treated them as very large assignments and perceived
their role as one of meeting the specs. In contrast, when
they are allowed to come up with projects that they
wanted to pursue, students have a vested sense of
ownership of the project. Students seem to be
significantly more motivated, pursue independent
learning, and exhibit a sense of ownership and pride.
Projects are not considered "work™ that instructors make
them do. Rather, successful completion of the project is
often seen as personal fulfillment.

Deliverables

As expected, motivation does not, by itself, ensure
quality. In order to monitor progress and quality, each
team is required to submit a prospectus, a design
document, a final report, and a set of periodic status
reports. The content and deadlines during the 15-week
semester for the deliverables are discussed next.

The prospectus is due during the 3rd week and must
contain, at least, the following items: (1) a clear
description of the project scope; (2) a short description
of the candidate tools, languages, or technologies that
will be used; (3) a breakdown of the responsibilities of
each team member; and (4) tentative timeline at the
subtask level. The instructor reviews the prospectus in
order to ensure that the type of project and its scope is
appropriate for the capstone course. More specifically,
we expect capstone projects to include topics from
several sub-disciplines within computer science, e.g.,
networking, artificial intelligence, graphics, databases,
programming languages, parallel algorithms, etc.

The design document is due during the 5th week.
This document describes how the team will organize the
project, what development methodology will be
followed, and the tools and libraries they will use. The
design document forces students to think about the
overall structure of the project, to reflect upon an
appropriate development methodology, and to research
possible implementation technologies. The instructor
reviews the design document to ensure that the project
involves sufficient components to be considered a
capstone experience. For example, a project that
involved nothing more than tools learned in regular
classes would not be acceptable. Rather, the instructor
looks for projects that require a fair amount of
independent learning of tools, techniques, and
technologies. In fact, over the last several years all
teams used languages, tools, and technologies that were
not covered directly in any formal course.

The final report is due during the 15th week. It is a
formal report that documents the product and the

process. In addition to the technical contents, the report
must also contain a section on professional ethics and
will be discussed in more detail in the Professionalism
section below.

In addition to the above three major deliverables,
each team is required to submit three status reports
during the 7th, 10th, and 13th week. The purpose of the
status reports is to both monitor progress and remind
students of the importance of continually making
progress on their capstone project. The status reports
require students to describe what they wanted to
accomplish (from their design document), what they
really accomplished, and to reflect on their progress to
date.

Finally, each team is required to give a 30-minute
presentation and demo of its project during the 15th
week. More information on the role of the presentation
is given in the section on Professionalism below.

While the above deliverables are team-prepared, the
instructor also requires every student to submit a
periodic assessment of each member in his/her team.
The contents and purpose of this assessment is also
discussed below in the Professionalism section.

Evaluation

The combination of motivation factors and deliverables
ensures that our students are technically strong. By the
end of the term they have successfully built a large,
complex piece of software without close instructor
intervention.

However, evaluating individual effort in a team
setting is difficult. The weekly journals help in this
regard, but on more than one occasion teams have
approached the instructor to say that one of their team
member’s journal was incorrect, i.e., the student was
making up journal entries. Therefore, in our next course
offering we will be mandating the use of Subversion® in
order to be able to track changes made by individual
students”.

Process

The “process” aspect of the capstone course addresses
the fact that we want our students to learn how to build
software of significant size. Ideally, students should
understand the strengths and weaknesses of several
software development methodologies, and be able to
choose a methodology to manage their projects.

In our capstone course, the instructor gives students
the freedom to choose a methodology that they describe
in their design document. The instructor often hints that
students choose a methodology that they haven't used
before. The rationale is that if students choose an
already familiar methodology, they are not gaining the
broader development experience that we would like
them to have before they graduate.



Students are required to reflect upon their chosen
methodology in their final report and presentation. The
instructor asks them to critique their methodology and
discuss its advantages and disadvantages. The
instructor does not grade the process/methodology
itself. Rather, the instructor looks to see that each
student  thoughtfully  discusses  their  chosen
methodology in the context of their project.

Evaluation

In our CS program, the capstone course is the only place
where students get a semester-long project in which
they must identify and follow a development
methodology into practice. Most of our other courses
either have shorter projects, or do not require any
particular methodology be followed. Our rationale is
that by the end of the capstone course, students have
had a significant immersion into a methodology of their
choosing. Furthermore, their required reflection on the
strengths and weaknesses of their chosen methodology
enable students to critically evaluate a methodology on
their own.

It is interesting to note that in the many years we
have allowed students the freedom to choose, only one
group has chosen the classic waterfall model. Every
other team has chosen an agile methodology. Perhaps
this is due to the negative spin put on the waterfall
model by the more vocal agile community, or perhaps
they do not feel they have enough time for the waterfall
model to be successful.  However, this is mere
speculation, and an avenue for more investigation in the
future.

Professionalism

The final aspect addressed by our capstone course is
"professionalism”. In our context, professionalism
refers to the behaviors exhibited by students during the
course. During the capstone course, the instructor
attempts to answer the question "does the student act
professionally?"

Unfortunately, professionalism is a loaded term and
can have several meanings. We have decided to limit
ourselves to the following. Being "professional” means
that one
* isavaluable, contributing member of a team.

*  does the best work one is capable of.

* understands how a code of ethics affects one's
discipline.

» exhibits a command of oral presentation skills.

Measuring Teamwork

Assessing a student’s role in a team is accomplished
through periodic peer evaluations. Every 2-3 weeks
every student is required to submit an evaluation of his
team members. The evaluations require commenting on

whether the other team members made good technical
contributions, were responsible and dependable, and
showed initiative.

The evaluations serve two purposes. First, the fact
that every student is evaluated by their peers reminds
them of the importance of professional conduct.
Second, the periodic reports alert the course mentor as
early as possible to problems that may require
intervention.  Depending on the seriousness of the
comments the course mentor may choose to talk with
the student (and perhaps the entire team) to try to
correct any issues within the team. In the extreme case
a student may be removed from a team and fail the
course.

Measuring Workmanship

Quality of work is measured in several ways. All the
written deliverables are graded on clarity, organization,
and quality. The final presentation is graded on how
well it is delivered (e.g., was it rehearsed?). The team's
final demonstration is graded on how well it is
presented, and whether or not it demonstrates the
relevant features of the final product.

Since every team chooses its own project, the quality
of work is not graded exclusively on the length of the
feature list. It is virtually impossible to compare two
different projects in order to decide which one is
"better". Therefore, each project is judged on its own
merits based upon the initial project prospectus, along
with the periodic milestone reports. Our expectation is
that while students will do their best, they probably will
not complete every feature they hoped for.

Measuring Ethics

Students are required to read, understand, and reflect
upon the Software Engineering Code of Ethics and
Professional Practice (SECEPP)®. We discuss the paper
at the beginning of the semester and tell students that
they are expected to apply its relevant principles
throughout the semester. In particular, the instructor
requires them to focus on Principle 3 of the SECEPP
that deals with product development and to include in
their final report a section in which they must identify
all items under principle 3 that are relevant to their
project. For each such item, the report must include a
clear comment on how the team addressed that item
during the development of the project.

Presentation Skills

Each team is required to give a 30-minute presentation
and demo of its project during the 15th week. The
presentation ensures that students are given an
opportunity to describe their project to an audience that
is not familiar with it.



As an alternative to an in-class presentation, teams
are encouraged to present at venues that have a general
university-wide audience (as described above). This
often is a significant challenge for students that are used
to presenting only to their CS friends. Last semester
three (out of five groups) were proud of their work and
excited enough to display it at the university-wide
Student Scholarship Day and as wells as the college-
wide project day, even though participation was
completely voluntary.

Evaluation

All four measures of professionalism contribute to the
student’s final grade. If the peer evaluations are poor or
if a student’s contribution to the final presentation is
inadequate, then the student may receive a grade lower
than the rest of the team.

The periodic team evaluations are submitted
anonymously, and students tend to evaluate each other
honestly (student evaluation of each other tends to
match the instructor’s own evaluation of each student).
Furthermore, students are encouraged to contact the
instructor if a team member is not contributing fully to
the project. So far, the authors have not had incidents of
an unproductive student being shielded by his team.
Rather, the reverse seems to be the rule: teams want to
get rid of unproductive team members as soon as
possible.

Furthermore, we try to provide for better team
coherence by allowing students to form their own
teams. Historically the course enrolls approximately 30
students, which are divided into teams of 4-6 students.
By the tie students get to the senior capstone course they
have had several classes with their peers and have
formed friendships with several of them. Allowing
those friendships to persist throughout the capstone has
meant the instructors do not have to closely monitor
teams and remind them to get along. In fact, students
have often approached the instructors before the term
begins and asked to form teams and start work.

The team evaluations also help in measuring
workmanship.  Students are quick to note if another
student submits code that doesn’t work, or doesn’t work
well with existing code. The team evaluations, along
with the final demo, alleviate having the instructor look
closely through the code itself.

Finally, the students’ ethical reflections have been
surprisingly good. Our students clearly appreciate the
role of a professional code of ethics, as it applies to
software development.  Their reflection documents
demonstrate their knowledge of the SECEPP.

Conclusions

Teaching any capstone course is challenging. One must
balance many factors in order to make it a successful

course, both from the perspective of the students, as
well as the perspective of the university. Framing those
challenges within the contexts of “product”, “process”,
and “professionalism” allows one to focus on the salient
components of the capstone course, ensuring a
successful student experience.

We have received several comments from students
over the many years we have been teaching the capstone
course. Typical comments include “allowing us to
choose our own projects...is always more enjoyable”
and “it is great that the class is split up into milestones,
such that the entire grade isn't earned on the last day of
class but rather it is built up from the beginning of the
semester through to the end”.

In summary, we believe our students have a
foundation  for  understanding and  practicing
professional behavior.  They know how to work
together in a team, they know that shoddy workmanship
is not tolerated, they are aware of how a code of ethics
helps to answer possible dilemmas during project
development, and they understand the challenges of
presenting their information to a wide audience.

References

1. Clear, T. 2009. Thinking ISsues: the three p's of
capstone project performance. SIGCSE Bull. 41, 2
(Jun. 2009), 69-70. DOI=
http://doi.acm.org.ezproxy.gvsu.edu/10.1145/15954
53.1595468

2. ACM Code of Ethics and Professional Conduct.
http://www.acm.org/about/code-of-ethics.
Retrieved on 12/15/09.

3. D. Gotterbarn, K. Miller, and S. Rogerson,
Software Engineering Code of Ethics is Approved,
Communications of the ACM, Vol. 42, No. 10
(October 1999), 102 107

4. Subversion is
http://subversion.tigris.org/

5. Jones, C. 2010. Using subversion as an aid in
evaluating individuals working on a group coding
project. J. Comput. Small Coll. 25, 3 (Jan. 2010),
18-23.

available at



	CS Capstone: Lessons from the Field
	Introduction
	Product
	Motivational Factors
	Deliverables
	Evaluation
	Process
	Evaluation
	Professionalism
	Measuring Teamwork
	Measuring Workmanship
	Measuring Ethics
	Presentation Skills
	Evaluation
	Conclusions
	References

