
Project Management and Software Development Processes for
Computer Science Capstone Projects

Dean Knudson and Alex Radermacher
North Dakota State University

NDSU has conducted over 50 very successful Computer Science capstone team projects in the past four years, for
companies including Microsoft, IBM, Rockwell Collins, Thomson Reuters, 3M, ATK, Polaris, West Corp. and John
Deere. This paper will describe our capstone program and briefly relate the evolution of our software development
and project management processes. In particular we have implemented processes that follow standard project
management phases (initiation, planning, execution, control and closure) as well as built software development
processes that follow the SEI’s CMMI model. These processes are applicable to any small team, short-duration
project environment but are specifically tailored to computer science capstone projects.

Corresponding Author: Dean Knudson, dean.knudson@ndsu.edu

Introduction
The NDSU B.S. program has required

undergraduates to complete a capstone course since
2004. Our capstone course is centered on team based
software development projects conducted for local or
regional businesses.

Sponsoring Companies
3M NISC
ATK Polaris
Honeywell Rockwell Collins
IBM Sundog
John Deere Thomson Reuters
Microsoft West Corp.

Table 1: Recent Sponsoring Companies

Our students work in teams of three or four for an

entire semester. We arrange for development projects
centered on applications of immediate practical value to
the sponsoring companies so that student learning
experiences are similar to activities that they will be
responsible for after they graduate. These projects
cover the entire software development life-cycle from
requirements definition through final delivery to the
customer. This requires students to directly confront the
need to provide value to their customer and gives
students a broad view of how development projects
begin and fit into the spectrum of activities and
concerns with which a company must deal.

The goals of the capstone course are to provide
students with a concrete learning experience in which
they develop real-world software for regional
companies while being exposed to development and
management processes they will encounter in their

professional careers. We believe that our methods of
applying a rigorous process to a capstone course
improve the quality of education students can expect to
receive from this type of course3,5,6.

SEI CMMI Level 2 Model
At NDSU we have been developing a set of processes
that follow the Software Development Capability
Maturity Model Integration maturity level 2 model
promulgated by the Carnegie Mellon Software
Engineering Institute1. We also have incorporated
project management concepts for project initiation,
planning, execution, control, and closure as described in
the Project Management Body of Knowledge PMBOK
Guide2.

Capability Maturity Model Integration (CMMI) is a
process improvement approach that provides
organizations with the essential elements of effective
processes that ultimately improve their performance.
CMMI can be used to guide process improvement
across a project, a division, or an entire organization1.
This model has been used extensively in industry and
has been shown repeatedly to provide value to
companies that have implemented processes that follow
the model2.

There are five maturity levels defined with level 1
being the lowest and default level and level 5 being the
highest. We will be implementing processes to satisfy
the first improvement level - maturity level 2
(Managed). At this level many of the most
fundamentally important processes (Requirements
management, configuration management, etc.) have
been defined. Table 2 provides a brief description of the
seven different process areas of CMMI Maturity Level 2
model.

One thing to keep in mind is that the CMMI is a
model that describes what should be done (i.e. the
characteristics of effective processes.) but does not
describe how it should be done. We have developed
processes along with templates and examples which
define how these processes shall be followed.

Process Areas Purpose
Requirement
Management
(REQM)

To manage requirements of
the project’s products and
product components, and to
identify inconsistencies
between those requirements
and the project’s plans and
work products

Project Planning
(PP)

To establish and maintain
plans that define project
activities

Project Monitoring
and Control (PMC)

To provide an
understanding of project’s
progress so that appropriate
corrective actions can be
taken

Supplier Agreement
Management (SAM)

To manage the acquisition
of products from suppliers

Measurement and
Analysis (MA)

To develop and sustain a
measurement capability that
is used to support
management information
needs

Process and Product
Quality Assurance
(PPQA)

To provide staff and
management with objective
insights into processes and
associated work products

Configuration
Management (CM)

To establish and maintain
the integrity of work
products using configuration
identification, control,
accounting, and audits.

Table 2 – CMMI Maturity Level 2 Process Areas1

Capstone Course Structure
The basic structure of our capstone program is as
follows. The computer science capstone course is
offered every spring semester as a three credit course.
(Our processes could be used just as easily in a two
semester course.) During the fall semester the instructor
works with many potential companies to determine
which have potential projects for that spring. These
projects are defined so that they are fairly well
understood by everyone. It is also important to define
projects that have real value to the sponsoring
companies but are not on a critical path. Projects are

reviewed to make sure they do not require too much
special in-house knowledge, are not on a critical path
for the company, do not require special equipment or
software which is not available and are appropriately
sized for a one-semester project. It has always been the
case that we have been able to find more than enough
companies willing to sponsor the student teams.

The instructor’s involvement with the project does
not include actual control of the project definition. The
sponsor defines the project and owns the detailed
requirements. However, the instructor will work with
the sponsor to ensure that the project is appropriate for
the course. The instructor also grades many of the
customer deliverables such as the Project Initiation,
Planning, Requirements, Design, and Test Plan
documents as well as formal presentations at mid-term
and final reviews.

On the first day of class, all potential projects are
reviewed with the students. They are then given the
opportunity to bid on whichever project is most
appealing to them. Students are permitted to request to
be on a team with another student, but are not
guaranteed that this will happen. The advantage of
letting students pick their own teams is that they then
often work well together. However, the disadvantage is
that they miss the opportunity to learn to work with
strangers and experience team building.

Once the students have submitted their bids, the
instructor looks over the applications and assigns teams
to the various projects based on the preference or
experience of the students. Then each team separately
meets with the instructor before being allowed to meet
with their company sponsor/mentor. The purpose of
this meeting is to make sure they understand the project
as much as possible from the initial description and are
ready with a good set of questions for the
sponsor/mentor when they first meet. Having a well
thought out set of questions for the initial meeting helps
considerably in getting off to a good start with the
sponsor/mentor.

Industry standard project management phases are
followed (Initiation, Planning, Execution, Control,
Closure.) with Execution and Control being performed
in parallel. The execution phase includes the standard
software development activities of Requirements
definition, Design, Coding, and Testing. Templates and
multiple examples from previous classes are provided
for use during all phases. A software process document
describes what is to be done during each of these
phases. These processes can be tailored (e.g. using the
company coding standard instead of the default coding
standard.) or replaced entirely by the team and their
industry sponsor with approval from the instructor.
In addition, a website is established for keeping class
lecture notes, templates, and general information for the
class. Specific project related materials (Project

Initiation Document, Schedule, Weekly Reports,
Requirements/Design/Testing documents, Mid-term
Presentation, etc.) are kept on team-specific websites
with access restricted to only the project instructor, the
corresponding student team, and their mentors and
sponsors. These websites use the open source project
management software Trac7.

This gives the remote sponsor/mentor the ability to
closely follow the project documentation and code
development. They also receive weekly progress
reports and in almost all cases have weekly conference
calls or meetings with their student teams. Teams also
schedule occasional meetings with the course instructor
to ensure that they are performing well.

Periodic process audits of all teams are conducted by
a third party, usually a graduate assistant. The process
audits gauge whether or not a team is following the
procedures outlined by the course process document.
Teams receive reports on their adherence to the process
and are told when they are not in compliance with any
particular process. Teams are given two weeks to fix
and problems and come into compliance with the
process document. Code audits are also conducted
alongside the process audit to determine whether or not
a team is following its coding standard.

It is possible to use our processes in programs where
much broader capstone projects are involved; for
example, projects involving hardware and software
development as well as industrial engineering concerns.
On the rare occasion that we have dealt with these kinds
of projects we have not had any issues. Also, if a
college or university does not have established
relationships with external industrial companies, these
processes will work without modification on internal
projects. Over the past four years, roughly 10% of our
projects have been internal.

Evolution of Processes
For the past five years we have asked both students and
industry to provide feedback on our processes. Students
and sponsors complete surveys at the end of the course
and all student teams perform post mortems detailing
their project experiences. In addition, we have worked
with industry to evaluate our processes in relationship to
the SEI CMMI model. A gap analysis was performed
two years ago after which we worked to bring our
processes in compliance with CMMI Level 2
expectations. These changes were primarily in the areas
of configuration management, risk analysis,
documentation of processes, and measurement and
analysis. We have made multiple updates to our
processes and we are currently conducting a new
industry led assessment to further improve our
processes.

Some specific changes we have implemented as a
result of our feedback from industry include:

 Defined specific language usage (e.g. “shall”,

“should”, “will”, and “may” have precise
definitions.) for use in requirements documents.

 Created a default coding standard (After many
suggestions and much feedback on draft
documents.) for teams to follow.

 Established requirements for size and effort
estimation and how they must be tracked.

 Established the need for a Change Control Board
(CCB) and its role (i.e. A CCB is only used for
major project changes.) for a capstone project
course.

 Established use of Subversion8 (A content
management system.) to store and manage code.

 Defined how to deal with the concept of a software
baseline, which is set at delivery to the customer.

Several changes have also been implemented as a

result of feedback from faculty and students. Some
examples include:

• Established the use of online areas for teams to

store and manage proprietary documents.
Originally TWikis were used, but we transitioned to
using Blackboard and e-Portfolios, and eventually
Trac4.

• Established a capstone project process audit to
monitor adherence to the course process and assist
teams to correct noncompliance.

• Implemented more reflective opportunities (e.g. at
mid-term reviews) than just the final postmortem.

Summary
We have found that the use of well defined processes
for both project management and software development
has resulted in high quality capstone projects. This has
been validated by both student and sponsoring company
feedback.

Our results from the past five years have been very
positive as indicated in the tables below.

Table 3: Student Survey Rating of Overall Capstone
Course Value (2004-2009)

Ranking Number of Students

Very Good 88

Good 23

Marginal 2

Poor 1

Table 4: Sponsor Satisfaction with Capstone Projects
(2004-2009)

Future Work
Agile software development has had many successes
and failures during the last nine years. Nevertheless, the
great value of some agile development practices is
widely recognized. (Agile software development refers
to a group of software development methodologies
based on iterative development. The main principles are
related to early and continuous delivery of valuable
software, managing and even welcoming requirements
changes, short delivery cycles, involving both business
people and developers on a daily basis, building teams
around motivated individuals and giving them the
environment and support they need, face-to-face
communications, making working software the primary
measure of progress and creating sustainable systems.)
While most software development organizations are not
completely agile, most have adopted at least some agile
practices, even when their development framework is
non-agile. Therefore, it is important that students have
the opportunity to learn and practice agile techniques
before they graduate into the job market. The capstone
project is the logical place to provide this exposure and
practice. While the CMMI and agile approaches when
used independently have value, we believe that merging
the best of these approaches will be even more valuable
to capstone project students.

The use of agile software development practices in a
student capstone project presents many challenges.
Many of these challenges arise from the fact that
students have a variety of constraints on their time
including other courses, often a part time or full time
job, possibly a family, and, for traditional age college
students, their individual maturation process. Student
schedules vary in how much time they can provide for
the capstone project, how scheduled this time can be,
and when this time occurs. Other challenges arise from
the implicit nature of agile interactions. Agile
development depends on informal, unscheduled
communication among the development team. Much of
what makes agile successful is unplanned (at least in the
specific details). Also, challenge arises from the lack of

individual ownership of artifacts during agile
development. Instead, the team as a whole is
responsible for all the artifacts (plan, code, tests).
 In the future we plan to address these problems by
extending our basic CMMI Level 2 process to
incorporate the support of agile methodologies e.g.,
stories and velocities 9,10.

We also intend to conduct a sequence of empirical
studies to validate student learning experiences using
these techniques.

References
[1] Capability Maturity Model Integration (CMMI),

Version 1.1, Staged Representation, CMU/SEI-
2002-TR-029, ESC-TR-2002-029, Software
Engineering Institute, 2002.

[2] Project Management Institute, A Guide to Project
Management Body of Knowledge (PMBOK
Guide) Third Edition, Four Campus Boulevard,
Newton Square, PA 19073-3299 USA, 2004.

[3] Dean Knudson, Alan Braaten, Kenneth Magel,
Kendall Nygard, “Software Engineering Process
for Capstone Courses and Projects”, 2007
International Conference on Software Engineering
Theory and Practice, Orlando, FL, July 9-12,
2007.

[4] Dean Knudson, Kenneth Magel, “Comments on
the Use of TWiki, Blackboard Portfolios, and Trac
to Share Proprietary Information in Student
Projects”, SITE 2008 – Society for Information
Technology & Teacher Education Information
Conference, Las Vegas, NV, March 3-7, 2008.

[5] Dean Knudson, Alan Braaten,
“Industry/University Cooperation in Defining
Software Processes for Use in Real-world
Computer Science Capstone Team Projects”,
SEPG 09 North America, a Software Engineering
Institute sponsored conference, San Jose, CA,
March 23-26, 2009.

[6] Dean Knudson, Alex Radermacher, “Software
Engineering and Project Management in CS
Projects vs. ‘Real-world’ Projects: A Case Study”,
IASTED-Software Engineering Applications 2009,
Cambridge, MA, November 2-4, 2009.

[7] The Trac Project
[8] The Subversion Project

http://trac.edgewall.org/

[9] Software Development Times (SD Times),
“Standing in the way of agile,” December 12,
2009, p35-36,

http://subversion.tigris.org/

www.sdtimes.com
[10] Boehm, B., and Turner, R., Balancing Agility and

Discipline, A Guide for Perplexity, Adison-
Wesley, ISBN 0-321-18612-5, 2003.

Ranking Number of Projects

Very Good 30

Good 16

Marginal 0

Poor 0

http://en.wikipedia.org/wiki/Software_development_methodologies�
http://en.wikipedia.org/wiki/Iterative_and_incremental_development�
http://www.sdtimes.com/�

	Project Management and Software Development Processes for Computer Science Capstone Projects
	Introduction
	SEI CMMI Level 2 Model
	Capstone Course Structure
	Evolution of Processes
	Summary
	Future Work
	References

