Improving Capstone Courses with Content Management
Systems and Virtualization

Alex Radermacher, Adam Helsene, and Dean Knudson
North Dakota State University

This paper discusses implementing content management systems and virtual servers in a university capstone
course and how these tools can improve a capstone course. In our capstone course, students work on real-world

projects sponsored by local and regional businesses.

Student teams follow a well-defined process which

specifies the actions they must perform (e.g. requirements gathering, software design, etc.) and the work products
they must create (e.g. software test plan, weekly reports, project schedules, etc.). This creates a need for a
content management system and project management tools which store the work products produced by the teams
and allow team members to easily collaborate on the project. During the last two years, we have worked to
migrate from using existing solutions (Blackboard E-portfolios, TWiki sites, and other tools.) to using
Subversion, Trac, and VMware ESXi. This paper discusses our experiences implementing these applications and
the benefits that using these applications provide over other solutions which we have used previously.

Corresponding Author: Alex Radermacher, alex.radermacher@ndsu.edu

Introduction

At North Dakota State University (NDSU) we have
been performing real-world projects as part of our
capstone course since 2005. During that time, we have
worked with many local and regional companies such as
IBM, Microsoft, ATK, 3M, and Thomson Reuters and
have completed over 70 projects. Over time, we have
worked to implement a Capability Maturity Model
Integration (CCMI) Maturity Level 2 process. A more
exhaustive description of our process can be found in
our previous work. In order to be considered operating
at Maturity Level 2, the Software Engineering Institute
(SEI) requires that a content management system be
used to store documents, code, and baseline releases’.
We regarded our previous approaches® as an
unsatisfactory solution to Maturity Level 2
requirements. Even if a capstone course does not need
to follow a specific process, using content management
systems, project management tools, and virtualization is
a good way to improve the quality of the capstone
course.

Over the past two years we have used Subversion
(SVN), a content management system, Trac, a project
management bug-tracking tool, and virtualization for
our capstone projects. This has allowed us to comply
with CMMI Maturity Level 2 requirements, but has
other benefits as well. For example, it allows us to
expose students to tools that they can expect to use once
they enter industry. Implementing these solutions also
improves the ability for students and their sponsors (An
experienced software developer or manager from an
industry company who works with a student team.) to
collaborate and to share information more easily.

The following sections provide a detailed description
of our current solution and the advantages when
compared to our previous methods. We also describe
the hardware used and our experiences with installing
and maintaining the software. A future work section
describes our plans to further improve our
implementation.

Content Management Using Subversion

Subversion is an open source content management
systems released under the Apache license. Student
teams use SVN to store and manage the code for their
projects. CMMI guidelines require that content
management systems be used to store work products,
but the use of SVN also improves the ability of teams to
share code and work together. Prior to implementing
Subversion for code management, project teams were
responsible for implementing their own content
management system or using other methods for
collaborating. The usual results of this approach were
that students would not store their code in a content
management system at all.

Each team is provided with a separate repository
which is initially set up by the course instructors. A
default structure is provided, but students are free to
implement their own system. Students receive training
on the basic functionalities of SVN (e.g. checking code
out of a repository, locking files, and committing
changes back to the repository.) and an SVN client is
installed on all machines in the university computer
labs. We use TortoiseSVN due to its ease of use, but
students are free to select their own SVN client.

Subversion was chosen over other alternatives mostly
due to cost factors, both in terms of initial cost and
support cost. The software can be installed and
administered effectively without requiring advanced
Linux knowledge and there is a large amount of
documentation and tutorials available online. SVN is
also designed for managing code, which makes it ideal
for use in computer science courses. Other universities
have also found that SVN is a useful tool for computer
science courses*®,

When we first began using SVN we used a spare
Pentium 4 machine with 512 MB of RAM running
CentOS 5.3. This machine had sufficient resources to
provide an adequate level of usability, but would begin
to run slow under heavy load. Basic access
authentication and SVN path-based authorization were
used to provide secure sites with limited access to non-
team members. This required creating unique user
names and generating passwords for every person who
needed access to a repository. The authorization
configuration files were also configured manually.
Although this was time consuming, it was possible to
set up without advanced Linux knowledge.

This year we have set up a virtual machine (More
information regarding the hardware and software
specifications of the virtual server can be found in the
Virtualization section of this paper.) dedicated for use
by Subversion and Trac servers, with one server
instance (Fedora 11 is used as the operating system.)
shared by all teams. Apache is used to serve the
repository’s contents via HTTPS. We use Apache as it
allows for secure connections and allows us authenticate
users at Apache’s level rather than relying on SVN’s
methods, which are not as secure or convenient.
Apache authentication is done against a local LDAP
server, allowing us to manage users and groups at a
higher level than using a text file on the server, which is
the default for Subversion. This additionally permits us
to avoid dealing with student password management.
We have created a Perl script which initializes
repositories and establishes authentication information
for each SVN instance.

Project Management Using Trac

Trac is an open source, web-based project management
tool released under a modified BSD license. Trac
interfaces with Subversion to provide browser-based
access to a repository and issue tracking features.
Student teams primarily use Trac to track and fix
software defects, store work products (e.g. design
documents, test plans, etc.), and facilitate
communication between project stakeholders.
Previously, we used Blackboard E-portfolios and
TWiki sites to provide support for project management
tasks, but we felt these solutions were inadequate. For

example, Blackboard E-portfolios had several
limitations: the inability to store documents in a tree
structure, only allowing for one team member to upload
documents, and limited storage capacity for files. TWiki
sites address many of the shortcomings of Blackboard
E-portfolios, but lack many of the features of Trac.
TWiki does not provide web access to an SVN
repository to easily view changes between versions of
code and does not contain a built-in ticket system like
Trac does.

Trac must be installed on the same server as
Subversion as it not possible to use Trac with a remote
SVN repository. Currently, Apache is used as it
provides a convenient front end for Trac and allows us
to use a standard authentication mechanism, LDAP.
The virtual machine which runs our Trac and
Subversion instances has been allocated 2 GB of RAM
which has improved performance compared with our
previous server.

Virtualization Using VMware ESXi

Virtualization is a computing technique used to allow
for multiple virtual computers to run on a single
physical computer. A single computer can ‘host’ many
virtual computers. Virtualization is commonly used to
allow for many servers to take up a small amount of
space as well as share a pool of computing resources.
This allows for more efficient usage of computing
resources, especially for low-use and low-power virtual
servers. We use virtualization to efficiently use
resources and allow us to provide individual computing
environments for each team.

One of the major advantages of using virtualization is
the ability to quickly deploy virtual machines as either
development or testing environments. This more
closely mimics the business environment and allows the
students to focus on their projects rather than trying to
find and configure extra computer hardware necessary
for their projects. This has also allowed us to
accommodate projects which require special software as
the sponsoring company can create a Virtual Machine
(VM) which we can easily install.

Our virtualization server is a dual quad-core Xeon
processor (i.e. eight total cores.) server with 2.0 Ghz per
core and 16 GB of RAM. We are use VMWare ESXi
version 4 for our virtualization platform. ESXi is a free
version of VMWare’s ESX hypervisor, which is a
minimalistic operating system designed exclusively to
host virtual machines. This, when combined with the
free VVSphere tool for managing virtual servers, allows
for a free virtualization system. The tools provided by
VMWare for free are rather basic, but sufficient for our
purposes. VMWare also has a number of tools available
for other high-level virtual machine management

functions, but the cost of such tools may be prohibitive
and the usefulness of such tools for this purpose limited.

Previously, we have used multiple physical servers to
provide services that teams required for their individual
projects. This caused a significant amount of
administrative overhead as well as complications with
multiple teams using the same servers. Occasionally,
students were also forced to use their own hardware to
run special software if the university was unable to
provide sufficient hardware resources. Two years ago,
we began to use virtualization to ease administrative
overhead and to allow for teams to work in their own
distinct environments. Initially we used the free and
open-source virtualization program VirtualBox.
VirtualBox functioned as expected, but we experienced
problems with the management of multiple virtual
machines, and VirtualBox lacks a bare-metal
hypervisor. This means that VirtualBox requires that a
full operating system be installed for VirtualBox to
function.

Future Work

Migrating to SVN and Trac has made it easier to keep
track of student work and assess student progress.
Utilizing virtualization has also reduced the amount of
work required for our IT support staff. In the future we
are planning to conduct empirical studies to measure
improvement in student learning through exposure to
these tools. Our experiences with these tools suggest
that they are beneficial for students and will help them
in their future careers, but we have not yet performed a
formal assessment of their impact.

Because most SVN and Trac environments for
student projects are similar, their deployment can be
scripted. We have worked towards this but have not yet
completed our work on a full-featured SVN/Trac
management tool. The completion of such a tool would
provide assistance for other universities interested in
implementing Trac and SVN. Another long term goal is
to create a customized Linux distribution with all the
scripts and packages required for easy deployment of
these tools and services.

Conclusion

Through the use of Trac, Subversion, and virtualization
we have been able to improve our capstone course. Our
primary motivation for using these tools is to comply
with CMMI Maturity Level 2 requirements, but these
tools can be used even when not following a thorough
process. Additionally, these tools closely resemble
those used in industry and provide a great learning
experience for students.

Using these tools requires a moderate knowledge of
the Linux operating system and some additional
administrative overhead when compared to ad hoc

solutions; however, they do allow students to focus on
their capstone project. Compared to other solutions that
we have used in the past, Trac, SVN, and VMware
ESXi provide a better experience for our students and
sponsoring companies.

References

[1] Dean Knudson, Alex Radermacher, “Software
Engineering and Project Management in CS
Projects vs. ‘Real-world’ Projects: A Case Study”,
IASTED-Software Engineering Applications 2009,
Cambridge, MA, November 2-4, 2009.

[2] Capability Maturity Model Integration (CMMI),
Version 1.1, Staged Representation, CMU/SEI-
2002-TR-029, ESC-TR-2002-029, Software
Engineering Institute, 2002.

[3] Dean Knudson, Kenneth Magel, “Comments on
the Use of TWiki, Blackboard Portfolios, and Trac
to Share Proprietary Information in Student
Projects”, SITE 2008 — Society for Information
Technology & Teacher Education Information
Conference, Las Vegas, NV, March 3-7, 2008.

[4] Curt Jones, “Using Subversion as an Aid in
Evaluating Individuals Working on a Group
Coding Project”, Journal of Computing Sciences
in Colleges, 25, 3 (Jan. 2010), 18-23.

[5] Louis Glassy, “Using Version Control to Observe
Student Software Development Processes”,
Journal of Computing Sciences in Colleges, 25, 3
(Feb. 2006), 99-106.

[6] The Trac Project Homepage
http://trac.edgewall.org/
[7] The Subversion Project Hompage

http://subversion.tigris.org/

[8] Peng Li, “Selecting and Using Virtualization
Solutions — Our Experiences with VMware and
VirtualBox”, Journal of Computing Sciences in
Colleges, 25, 3 (Jan. 2010), 11-17.

[91 VMWare Homepage http://www.vmware.com/

[10] VirtualBox Homepage http://www.virtualbox.org/

