
Designing a Capstone Course to Simulate the Industrial

Environment

Greg Speegle

Baylor University

Designing a capstone experience to simulate the industrial environment provides excellent preparation for
students’ lives after graduation. To determine this environment, current industry practices are modeled
from approximately 20 hours of interviews with developers, testers and project managers in consulting,
development and information technology departments. The results of these interviews are synthesized into
a new course.

Corresponding Author: Greg Speegle, Greg Speegle@baylor.edu

Introduction

Capstone courses are popular finishing touches for com-
puter science degrees.1,2 There are several motivations
for having such a course, such as domain-specific knowl-
edge, teamwork (including communication skills) and
real-world experience.3 Our motivation is to provide the
students with a realistic simulation of their future work-
place environments. Of course, our students will take
jobs in many different areas. From our most recent grad-
uating class, the students went to software development
companies, consulting companies, traditional informa-
tion technology departments, and graduate schools. All
of these post-graduate endeavors have different expec-
tations. Furthermore, large corporations have different
practices from small companies. Thus, no one model will
prepare every student for life after graduation.

Therefore, this course combines aspects of different or-
ganizations, preparing all students for some of their fu-
ture requirements. In order to create such a hybrid, the
current practices of different organizations are studied.
In particular, practitioners from a consulting company,
two software development companies and an informa-
tion technology department are interviewed. This pa-
per presents the interview techniques, summarizes the
results, and defines the course that evolved as a result
of these interviews. It should be noted that due to non-
disclosure agreements, no specifics from any organization
are included. However, in many cases there is significant
similarity between the organizations, making it clear how
a simulation of the environment should be structured.

Related Work

Capstone courses exist at many universities, and the
experiences at these universities are well documented.
Although the literature agrees that real-world involve-
ment is highly motivational,1,2,3,4, and that time con-
straints are a significant obstacle to learning,1,3,4,5 on

other issues there are diverse approaches. In particular,
there is wide variety in the size of the teams and the
homogeneity of their responsibilities.

For some projects, the teams are typically on the or-
der of three to seven students.1,3,6 Larger projects con-
sist of teams of 10-127 or even one team for the entire
class.6 Likewise, the responsibilities of the team members
varies in capstone projects. In smaller team projects, all
team members are responsible for all activities, but di-
vision of labor has a significant impact on deliverables.2

In one case, teams are divided into three groups, but the
groups are all developmental in nature.7 The experience
most similar to ours creates separate concerns for quality
assurance (testing) along with project management and
support.4

Interviews

One of the important contributions of this work, is the
interview process used to develop the specific goals for
the capstone course. The interview process was initiated
by contacting representatives from diverse companies as-
sociated with Baylor University or personally known to
the faculty. Members of the Board of Advocates for the
School of Engineering and Computer Science were enthu-
siastic about this project, and arranged interviews with
personnel who regularly interact with new hires. Four
companies were selected to complete the interview pro-
cess – one in consulting, two in software development and
one in information technology.

Each company setup a series of interviews with em-
ployees with diverse responsibilities. Specifically, four
broad categories of personnel were interviewed – devel-
opers, testers, managers, and support (which includes
databases, networks, business planning, etc). I was able
to interview an example of each type with most of the
companies and first line managers at every institution.
The managers were the most critical to interview since



they know the expectations for new hires.
The typical interview transitioned through three

phases. The first phase consists of getting to know the
person being interviewed. This is accomplished by ask-
ing the interviewee to describe their current work. This
technique has the advantage of allowing the interviewee
to relax, as some of the them were understandably ner-
vous about the process. However, since they are the ex-
perts about their profession, that question could always
be answered easily. Follow-up questions provided the
basic understanding of the interviewee’s position within
the organization and their basic responsibilities for the
software development process. The second phase of the
interview process consisted of questions specifically tai-
lored to the individual being interviewed. For example,
a management type would be asked questions regarding
the structure of a project, while a tester might be asked
questions about the design of end-to-end tests. The final
phase of the interview is wrap-up and appreciation. In
this phase, the interviewees asked questions and made
additional statements that are valuable and would have
been missed otherwise.

Interview Questions

Over twenty hours of interviews were conducted in four
distinct organizations. Individual interviews ranged from
thirty minutes to two hours in length. The majority of
the interviews were conducted in person, with the rest on
the telephone, both with individuals and with groups via
conference call. The typical interview was a one-on-one
session, but there were times when multiple people were
interviewed together.

While interviewing developers, my questions focused
on the development process, environment and paradigm.
In particular, we discussed the specifications provided,
code review process, unit testing process, development
paradigm (agile, waterfall, etc.) and documentation
requirements at each of the cooperating institutions.
These discussions reinforced the notion of differences be-
tween development environments, but commonalities did
emerge. In particular, the importance of documentation
to allow collaboration (both in 24/7 development cycles
and with other units such as testing) is strongly empha-
sized.

The importance of testing was reinforced during the
interviews. When interviewing testers, the key issues to
emerge were specifications, automated test suites. levels
of testing (functional, system, end-to-end) and feedback.
From these interviews, it became clear that development
of automated test suites must be a key component of any
industrial simulation.

Interviews with management personnel provided in-
sight on the overall structure of projects for capstone
courses, including issues such as a timeline,resource allo-
cation (specifically personnel), “feature creep” manage-
ment, installation and training and maintenance.

Support personnel is a broad term representing all peo-
ple outside of the typical code-test-deploy cycle. They

are critical to the success of the enterprise, and have di-
verse titles across institutions. Support personnel are
concerned with (among other things) security, return on
investment for the project, disaster recovery, network ca-
pacity, and database capability.

Responses by Interviewees

The response to the interviews was extremely positive.
The upper-management contacts not only made arrange-
ments for the interviews, but followed up to ensure
that everything went well. The individuals interviewed
seemed to be genuinely interested in the project and pro-
vided as much information as possible. The desire to
help is quite strong, as in more than one case, individu-
als sacrificed their lunch time for interviews or follow-up
conversations.

Also, it should be noted that after explaining the goal
of the capstone course, a common sentiment among many
of the interviewees is that such a course would have been
beneficial for them as students. Likewise, a desire to see
the end results of the interviews lead to this paper. In
conclusion, the interview process is very positive, as it
allows academics to stay in touch with the real world,
and allows practitioners a chance to provide guidance for
the next generation.

Results

All of the results from the diverse interviews have been
synthesized into the following areas. None of the institu-
tions incorporate all of these components, but the com-
monalities between the organizations yield several inter-
esting results.

System Integration

Within the consulting and information technology
groups, a very high percentage of the work focuses on
integration of already existing software systems. In gen-
eral, it is far more efficient to extend existing or off-the-
shelf software than to generate new code. Even the de-
velopment companies rarely program in a vacuum, as
software must function with outside vendors or other in-
ternal projects.

Integration is concurrent with development (and there-
fore, design and testing). Although the process is quicker
for integration, the process must be planned and tested
just as rigorously as pure development systems. Like-
wise, integration with other teams or external products
must be carefully designed and tested. As a result, the
capstone project must require integration with existing
software, or integration of two independently developed
pieces of software.

One Project - Three Parts

All of the companies interviewed have structures for their
projects, consisting of developers, testers and project
management/support (PM/S) components. Although all



environments have roughly equal number of people in-
volved in development and testing, the PM/S component
varied greatly at the different organizations. For exam-
ple, the consulting and IT environments place increased
emphasis on training, considering that an integral part
of the product development, while the development en-
vironments are not as concerned about training. The
PM/S team includes design, documentation, manage-
ment, resource allocation, disaster recovery, ethics and
security. “Developer” is used to describe any person who
generates code of any sort, from scripts to access data in
existing software systems to writing device drivers for an
operating system.

Within each environment there exists the notion of a
production environment and a development environment.
It is crucial that the developers and the PM/S team coor-
dinate their activities so that the production environment
can adapt to any changes efficiently. Likewise, the PM/S
team should be quick to provide the support needed for
the developers in terms of database access or other re-
sources. Integration of the three parts within one project
is a fundamental objective of the capstone experience.

Team Interaction

Team interaction is a broad category for handling issues
such as documentation, testing and code review. An im-
portant aspect of large project building is cooperating
with others, either internationally in 24/7 development
cycles or across the hall in terms of knowledge trans-
fer. Organized and scheduled reviews of not only code,
but also documentation and testing plans are critical to
the success of the project. This ensures that all project
members understand the various components. One im-
portant consequence of knowledge transfer is the ability
to rapidly take over for someone who is unable to con-
tinue with the project.

Additionally, every development process requires feed-
back from the users to determine the success of the
project. This feedback has different names in different
companies, but it is addressed in all of the organizations.
The project must have a mechanism for providing feed-
back from a userbase that is outside the students. PM/S
will be responsible for the feedback portion of the project.
However, implementation of changes deriving from feed-
back must be allocated to future semesters.

Challenges

A primary limitation is the fifteen week course time limit.
Total project development time is typically measured in
several months to years. As a result, the project will have
a limited scope. Related to this limitation is the business
planning typical in all software projects. Whether the
project is to support business or the business is the soft-
ware project, each organization requires a justification
for any software, be it projects, bug fixes or upgrades.
Clearly, within an academic department, similar motiva-
tions do not exist.

One question asked of all managers was “What project
would you do with 15 part-time new hires for 15 weeks?”
The universal reply was “Nothing.” Within each com-
pany, there is a learning curve required. The short-
est learning curve mentioned for any project was three
months. The longest was a full year. Given that a
semester is fifteen weeks, the learning curve is a signifi-
cant barrier to accomplishing useful work in the capstone
course.

Finally, although maintenance is a significant portion
of any software project, it is not possible within a fifteen
week time frame. Future work is to incorporate mainte-
nance, possibly by adding prerequisites to the capstone
experience that allow students to work on bug fixes early
in the semester.

The limitations of an academic environment prevent
simulation of other aspects of the workplace as well. In
particular, we cannot simulate the 24/7 development cy-
cle, including the difficulties in communicating with a
different culture. Our institution is fairly homogeneous,
and the students in the capstone course consist almost
entirely of upper middle income white males, 21-22 years
old.

Course Design

A project team will consist of no more than fifteen stu-
dents, and ideally no fewer than nine. In order to ac-
commodate the one project - three parts construction
commonly found during the interviews, the team will
be divided into three groups – development, testing and
PM/S. The actual project itself will be determined the
semester before the capstone course is offered.

Before the course begins, students signed up for the
capstone course will receive the high-level description of
the project. The students will be expected to come to
the first class session with a thorough understanding of
these materials. The initial class session will serve as
the project kickoff, where the structure of the class, the
expectations and the deliverables will be introduced.

The interviews indicate a structure for project manage-
ment with a lengthy iteration cycle. This process works
for large-scale industrial projects, but creates significant
downtime for the groups not involved in the initial as-
pects of the project. As a result, an iterative method with
a 4-5 week timebox will be employed. Individual features
will be assigned to specific timeboxes by the groups. The
teams will work in conjunction with each other to design
and document, implement and test each feature concur-
rently. Constant revision and cross-communication is ex-
pected. As such, this schedule more closely matches the
Unified Process as opposed to the waterfall model.8

For the PM/S group, the requirements are to gener-
ate human understandable documents for each feature,
and map these features to the overall project. The im-
plementation and testing groups are to provide feedback
for any aspect of the design which does not allow obvious



implementation and testing. Likewise, the implementa-
tion and testing groups are to provide feedback on any
external documents which are not clear to an end user.

The testing group designs test suites based upon the
initial capabilities of the feature, as well as test suites
for combinations of features. The test suite designs are
vetted by the PM/S and implementation groups. The
goal for the testing group is to build the initial test suite
by the time the initial implementation is complete. This
will allow testing to proceed in parallel with the design
and development. Each test run will produce a test re-
port showing all tests applied, and for all failed tests, the
expected and produced results.

Meetings with the faculty must be held regularly.
These meetings should vary from individual meetings
with students to group meetings to the entire class. The
purpose of these meetings is to evaluate performance and
to mediate any disputes. The faculty has a primary obli-
gation to prevent failures in one area from damaging the
other participants.

Grading

One of the requirements for each phase of the project will
be a timeline resulting in the completion of the require-
ments for that phase. The timeline will detail the indi-
vidual requirements for each student during the phase,
including due dates for the tasks. Individual grades will
be assigned based on the completion of these tasks, both
in terms of quality and punctuality. A student’s final
grade will be a combination of their individual work and
the success of the overall project.

Conclusion and Future Work

Developing a capstone course to simulate industrial ex-
perience is very similar to a project itself. The initial
requirements are refined by gathering additional informa-
tion. In this case, the additional information is derived
from interviews with the developers, testers, managers
and support personnel in industry to determine the en-
vironment to be simulated.

Several key components emerged from the interview
process. The size of the teams and the specialization of
the team members is clearly important. In turn, this
leads to the importance of documentation, testing and
management of new features, which may be under em-
phasized in an academic environment. Integrating the
development process within another system is also cru-
cial.

All simulations have limitations, and the capstone
course will not be able to reproduce the experience per-
fectly. For example, it is a common situation for de-
velopment to be a 24/7 process with team members all
around the world. More importantly, the semester pro-
vides a hard time limit which cannot be changed. As a
result, whatever is completed in fifteen weeks is the end
result of the project.

In the future, adding a pre-capstone course require-
ment might allow the learning curve to begin earlier,
and allow maintenance to be incorporated into the cap-
stone experience. This course would be a 1-hour pass/fail
course that requires the students to pass an exam in or-
der to take the capstone course. Maintenance jobs would
then be assigned in the initial phase of the capstone
course.

References

[1] Russel E. Bruhn and Judy Camp. Cap-
stone course creates useful business products
and corporate-ready students. SIGCSE Bull.,
36(2):87–92, 2004. ISSN 0097-8418. doi:
http://doi.acm.org/10.1145/1024338.1024379.

[2] Tony Clear, Michael Goldweber, Frank H. Young,
Paul M. Leidig, and Kirk Scott. Resources for in-
structors of capstone courses in computing. SIGCSE

Bull., 33(4):93–113, 2001. ISSN 0097-8418. doi:
http://doi.acm.org/10.1145/572139.572179.

[3] Richard C. Thomas and Rebecca Mancy. Use of
large databases for group projects at the nexus
of teaching and research. In ITiCSE ’04: Pro-

ceedings of the 9th annual SIGCSE conference

on Innovation and technology in computer sci-

ence education, pages 161–165, New York, NY,
USA, 2004. ACM. ISBN 1-58113-836-9. doi:
http://doi.acm.org/10.1145/1007996.1008039.

[4] A. T. Chamillard and Kim A. Braun. The soft-
ware engineering capstone: structure and trade-
offs. In SIGCSE ’02: Proceedings of the 33rd

SIGCSE technical symposium on Computer sci-

ence education, pages 227–231, New York, NY,
USA, 2002. ACM. ISBN 1-58113-473-8. doi:
http://doi.acm.org/10.1145/563340.563428.

[5] Ian Parberry, Timothy Roden, and Max B.
Kazemzadeh. Experience with an industry-driven
capstone course on game programming: extended
abstract. In SIGCSE ’05: Proceedings of the

36th SIGCSE technical symposium on Computer

science education, pages 91–95, New York, NY,
USA, 2005. ACM. ISBN 1-58113-997-7. doi:
http://doi.acm.org/10.1145/1047344.1047387.

[6] Michael V. Stein. Student effort in semester-long
and condensed capstone project courses. J. Comput.

Small Coll., 18(4):200–212, 2003. ISSN 1937-4771.
[7] Annegret Goold. Providing process for projects in

capstone courses. In ITiCSE ’03: Proceedings of

the 8th annual conference on Innovation and technol-

ogy in computer science education, pages 26–29, New
York, NY, USA, 2003. ACM. ISBN 1-58113-672-2.
doi: http://doi.acm.org/10.1145/961511.961522.

[8] Craig Larman. Applying UML and Patterns : An

Introduction to Object-Oriented Analysis and Design

and Iterative Development. Prentice Hall, 3rd edition,
2005.


